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Abstract. It was shown recently that it may be computationally advantageous to perform
computer simulations in a Lorentz boosted frame for a certain class of systems. However, even
if the computer model relies on a covariant set of equations, it was pointed out that algorithmic
difficulties related to discretization errors may have to be overcome in order to take full advantage
of the potential speedup. In this paper, we summarize the findings, the difficulties and their
solutions, and review the applications of the technique that have been performed to date.

1. Introduction

In [1], we have shown that the ratio of longest to shortest space and time scales of a system
of two or more components crossing at relativistic velocities is not invariant under a Lorentz
transformation. This implies the existence of an “optimum” frame of reference minimizing a
measure of the ratio of space and time scales. Since the number of computer operations (e.g.,
time steps), for simulations based on first-principle formulations, is proportional to the ratio
of the longest to shortest time scale of interest, it follows that such simulations will eventually
have different computer runtimes, yet equivalent accuracy, depending solely upon the choice
of frame of reference. The scaling of theoretical speedup was derived for a generic case of
two crossing identical rigid particle beams, and for three particle acceleration related problems:
particle beams interacting with electron clouds [2], free electron lasers [3], and laser-plasma
accelerators [4]. For all the cases considered, it was found that the ratio of space and time scales
varied as γ

2 for a range of γ, the relativistic factor of the frame of reference relative to the
optimum frame. For systems involving phenomena (e.g., particle beams, plasma waves, laser
light in plasmas) propagating at large γ, theoretical speedup of simulations being performed in
an optimum boosted frame could reach several orders of magnitude, as compared to the same
simulation being performed in the laboratory frame, for example. As an example, a speed-
up of 1,000 was demonstrated on a Particle-In-Cell (PIC) simulation of transverse instability
of an ultra-relativistic (γ=500) proton beam interacting with a background of electrons. In
the remainder of this paper, we summarize the difficulties and limitations of the method, the
solutions that were developed, and review its applications performed to date.
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2. Difficulties and limitations

Even if the fundamental electrodynamics and particles equations are written in a covariant
form, the numerical algorithms that are derived from them may not retain this property. As an
example, we considered in [5] an isolated beam propagating in the laboratory frame at relativistic
velocity. When applying the effect of the beam field on itself using the Newton-Lorentz equation
of motion, the contribution from the radial electric field is largely canceled by the contribution
from the azimuthal magnetic field. However, we showed that the so-called ‘Boris particle pusher’
[6] (which is widely used in PIC codes), does make an approximation in the calculation of the
Lorentz force which leads to an inexact cancellation of the electric component by the magnetic
component. The magnitude of the error grows with the beam relativistic factor and in practice,
it is unacceptably large for simulations of ultra-relativistic charged beams, where the cancellation
needs to be nearly complete. The issue was resolved by changing the form of the Lorentz force
term in the Boris pusher, and solving analytically the resulting implicit system of equations (see
[5] for details).

For electromagnetic calculations, a limitation may come from numerical dispersion in the
electromagnetic solver. The standard Yee solver [7], also widely used in PIC codes, has a
relatively high numerical dispersion that is anisotropic and depends on the cell aspect ratio and
the ratio of the time step to the cell size in each direction. Short of using a different field solver,
this limits the speedup that can be gained by performing the calculation in a boosted frame
because the number of cells needs to be kept above a certain minimum level in the longitudinal
direction to ensure that the numerical dispersion falls below an acceptable level in that direction.
Solvers that produce no numerical dispersion along major axes have been tested in the Scidac
codes Osiris [8], Vorpal [9] and Warp [10] with some success, but have yet to be fully validated.

An additional practical complication of numerical simulation in a boosted frame is that inputs
and outputs are often specified (or desired) in the laboratory frame. For example, in LWFA
simulations, laser and plasma parameters have to be transformed from the laboratory to the
new relativistic boosted frame, so that the electromagnetic waves will be Doppler-shifted, and
the background plasma, with higher density, is now drifting. Different strategies have been
adopted in the three Scidac codes applied to LWFA for laser injection in a Lorentz boosted
frame: in Osiris, the laser beam is initialized in the computational box, enlarging the box in the
transverse direction and in front of the plasma to accommodate the higher focusing angle and
longer wavelength; in Vorpal, the laser is injected from all faces of the computational box; in
Warp, the laser is injected at a plane that is fixed in the laboratory frame and drifting in the
boosted frame.

The initial phase-space distribution of a particle beam is generally known in the laboratory.
For calculations in boosted frames of large γ, deriving the initial beam conditions at a given
time can be easy if the initial conditions are simple (e.g., LWFA), or more difficult and/or
computationally costly if injecting the beam in a particle accelerator for example, where its
longitudinal extent in the boosted frame can cover several lattice periods. In order to circumvent
this difficulty, a procedure was implemented in Warp which injects the beam through a transverse
plane that is fixed in the laboratory, but drifting in the boosted frame, similarly to the laser
injection method. Due to long range space charge forces, it is still necessary to provide a
reasonable estimate of the beam distribution near the injection plane; this is accomplished by
the use of “frozen” drifting macroparticles.

After the relativistic PIC algorithm evolves the system in the boosted frame, the results
must be transformed back to the laboratory frame. To construct a single time shot in the
laboratory, a range of boosted time shots is required. This analysis can be done either as a
post-processing script or, more efficiently, at runtime. Nevertheless, we emphasize that the
transformation of several relevant output quantities for LWFA is straightforward, by using
relativistic invariants (e.g., total injected charge), or by simple Lorentz transformation (e.g.,
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maximum particle energy, final laser energy). Finally, specific diagnostics might already contain
all space and time information necessary for complete Lorentz transformation (e.g., particle
tracking). As a set of additional diagnostics, we have found it convenient in Warp to record
quantities at a number of regularly spaced “stations”, immobile in the laboratory frame, at a
succession of discrete times, for both detailed time histories and laboratory time-averages.

Details of the input and output procedures can be found in [11] for Warp, in [12] for Osiris
and in [13] for Vorpal.

3. Examples of application

3.1. Electron cloud driven instabilities

Several existing and planned future particle accelerators have limitations due to the electron
cloud instability that may negatively impact the beam quality and in some cases even lead to
severe beam loss. A calculation of electron cloud driven instability [2] for an ultra-relativistic
beam was performed with the Warp code framework in (a) standard PIC mode using the new
particle pusher in a Lorentz boosted frame; (b) in quasistatic mode [14] using linear maps
to push beam particles into the accelerator lattice. The two runs were in good agreement
and completed using similar computer resources and runtimes. The speedup factor of the
PIC boosted frame calculation compared to a PIC calculation in the laboratory frame was
estimated at 500. For many calculations of electron cloud instability, the boosted frame approach
may not resolve any additional physics not included in the quasistatic approach. We note,
however, that the quasistatic method requires significant special coding for taking into account
eventual longitudinal motion of electrons [14], as well as a special parallelization scheme [15]
for parallelization along the axis of beam propagation, that are not standard to PIC codes. By
contrast, the boosted frame method includes naturally the longitudinal dynamics and requires
more modest modifications to an existing standard PIC code or framework (including none for
full parallelization).

3.2. Laser wakefield acceleration

Laser driven plasma waves offer orders of magnitude increases in accelerating gradient over
standard accelerating structures (which are limited by electrical breakdown), thus holding the
promise of much shorter particle accelerators. Yet, computer modeling of the wake formation
and beam acceleration requires fully kinetic methods and large computational resources due to
the wide range of space and time scales involved [16]. For example, modeling 10 GeV stages
for the LOASIS (LBNL) BELLA proposal [17] in one-dimension demanded as many as 5,000
processor hours on a NERSC supercomputer [13]. As discussed in [1], the range of scales can
be greatly reduced if one adopts the common assumption that the backward-emitted radiation
can be neglected, enabling, for the first time, the full-PIC simulation of the next generation of
laser systems [15].

Warp simulations at plasma density ne = 1019 cm−3 were performed in 2-1/2D [11] and 3-D
[15] using reference frames moving anywhere between γf = 1 (laboratory frame) and 10. These
simulations are scaled replicas of 10 GeV stages that would operate at actual densities of 1017

cm−3 [18, 19] and allow short run times to permit effective benchmarking between the algorithms.
Two figures of merit were considered (both evaluated in the laboratory frame): (a) the peak
energy of the accelerated electron beam; (b) the average energy history of the electron beams.
Agreement within a few percent was observed on the beam peak energy between calculations in
all frames, with a speedup of 100 measured between the calculation in the frame at γ = 10 and
the calculation in the laboratory frame. The average beam energy history reveals agreement at
the few percent level for the accelerating phase, followed by a growing discrepancy during the
decelerating phase. In order to obtain the speedup of 100, a low dispersion electromagnetic solver
was used for γ ≥ 5, while the standard Yee solver was used otherwise, for the reasons stated
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in the preceding section. Percentage level agreement was obtained during both accelerating
and decelerating phases by using the Yee solver for all values of γ, at a cost, but nonetheless
achieving a maximum measured speedup of 10. The reasons for the discrepancies at high values
of γ between the two electromagnetic solver runs are currently under investigation.

The parallel VORPAL framework has been used to simulate proof-of-principle acceleration
of test-particles to 10 GeV energies in one and two spatial dimensions, for plasma channel
parameters in which pump depletion and dephasing lengths are equal [20]. The 1D simulations
were done both in the laboratory frame and in a Lorentz boosted reference frame [3], showing
qualitative agreement in the peak energy of the accelerated particles. The boosted-frame
simulations were 1,500x faster, reduced errors in the laser group velocity, and eliminated
problems with artificial dark current. The 2D simulations were not feasible in the laboratory
frame, but the boosted-frame results [13] showed agreement with the predictions of scaling
arguments [18], with an estimated 2,000x speedup.

A set of 3-D benchmarks was performed between OSIRIS boost and OSIRIS and QuickPIC[14]
in the laboratory frame, for weakly-nonlinear/nonlinear regimes and self-injected/externally-
injected electron beams, with very good qualitative and quantitative agreement. Particular
emphasis was given to a 1.5 GeV self-injection stage of LWFA, successfully reproducing the
results obtained with laboratory frame simulations presented in [21]. The boosted frame scheme
was tested for a broad set of numerical parameters and algorithms, namely different boost speeds
with varying resolutions, higher order field solvers [22], particle interpolation schemes [23], and
modified Boris pusher [5], showing overall result convergence and consistency. For the particular
case of a 1.5 GeV self-injection stage, results recover those in the laboratory frame presented in
[21].

3.3. Free electron lasers

In a short wavelength free-electron laser (FEL), a high energy electron beam interacts with
a static magnetic undulator. In the optimal boost frame with Lorentz factor γ, the down-
shifted FEL radiation and up-shifted undulator have identical wavelengths and the number of
required time-steps (presuming the Courant condition applies) decreases by a factor of 2γ2 for
fully electromagnetic simulations. Examples of boosted-frame simulations are compared [25]
to results obtained with the eikonal (i.e, SVEA) and wiggler-period averaged code Ginger [24].
It was concluded that if the necessary FEL physics can be studied with an eikonal code, it
will run much faster than a full EM code in whatever frame. However, if there are important
physical phenomena that cannot be resolved properly by an eikonal code, a boosted-frame
electromagnetic code is a very attractive alternative to a brute force full EM calculation in the
laboratory frame.

3.4. Coherent synchrotron radiation

Another application for which the Lorentz-boosted frame method might be useful is that of
modeling coherent synchrotron radiation (CSR) [26] emitted by high current, high brightness
relativistic electron beams. Because full scale electromagnetic simulation of CSR in the
laboratory frame is difficult due to the wide range of scales (chicane lengths of order meters,
radiation wavelengths of orders microns), in order to make the calculation tractable most CSR
simulation codes apply simplifications such as ignoring transverse variation of CSR across the
electron beam. We have begun preliminary work of simulating CSR emission with the boosted
frame method in Warp, examining the behavior of a high current, short electron beam transiting
a simple dipole magnet. Our early results show that upon exit from the undulator the electron
beam shows the characteristic energy loss variation with longitudinal position that one expects
from previous theoretical analyses of CSR. Further studies are currently underway.
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4. Conclusion

The non-invariance of the range of scales of a physical system implies that the computational
cost of a certain class of computer simulations depends strongly on the choice of the simulation
frame of reference. Some algorithmic difficulties may arise due to the loss of covariance
upon discretization of the Maxwell-Vlasov system of equations, and the need to transform
input/output data between the laboratory frame and the Lorentz boosted frame. Most such
difficulties have been overcome and no “show-stopper” has been identified at this time. First
principle simulations in boosted frames have been performed successfully by the Scidac codes
Warp, Osiris and Vorpal in application to electron cloud driven instabilities, laser wakefield
acceleration and free electron lasers, with speedups ranging between a few and several orders of
magnitude. Further testings and studies of advanced numerical techniques are underway to fully
validate the method and push the limits toward higher speed-ups. Our recent progress shows that
first principle modeling in a Lorentz boosted frame is a viable alternative or complement to using
reduced descriptions like the quasistatic [14] or eikonal [24] approximations, or scaled parameters
[19], when there is a need to study physics that is not accessible to the other descriptions, or for
validation of their simplifications.
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